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Page 4, Eq. (2.1) should read:   9q./8n = q./R, . 

Eq. (2. 5) should read:   a(8) = in q^ + in [ R(8) - d(8) ] . 
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Page 6,   3 lines down:   Equation number (2.12) should be changed to (2.11). 
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Page 8,  Eq.  (3.12):   Superscript hats C^) should be inserted over tDand ^. 
Page 12,  4 lines down should read:   "late here,  in a slightly " 

10 lines down should read:   "bounded and   7Q* («P, ^t) a o(l/r),.,, " 
Page 13,  2 lines up should read:   ".... values, and Q is". 
Page 14, line 6 should read: 

DX [ 
e ^] = II ^iVvdtpd^ 
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Page 15,  Footnote,  line 2 should read: 

00 
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Page 16, 3 lines up should read: n.... VAR, using (5. 6) as the.... ". 
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Page 21, Eq.  (6. 5/)should read: 
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o Jo 
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Page 36,  2 lines down should read:   ". ... numerically using the" 
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ON THE INTERACTION OF A TWO-DIMENSIONAL JET 

WITH A PARALLEL FLOW + 

by 

Robert C.  Ackerberg ' and Alexander Pal 

Polytechnic Institute of Brooklyn 

SUMMARY 

The injection of a two-dimensional jet of total head Hj^ from an infinite 

plate into a uniform stream of lower total head Hp is considered,  the fluids being 

assumed inviscid and incompressible.    Steady,  irrotational solutions of Euler's 

equations are found for H^/H^ ",roo.    The region behind the jet is treated as a 

stagnant wake with constant pressure equal to that of the undisturbed stream, and 

the jet injection angle is fixed across the jet opening. 

When a thin jet approximation is combined with Bernoulli s principle, a 

non-linear boundary condition is derived along the vortex sheet separating the jet 

from the external flow.    The resulting non-linear potential problem (in the plane 

of the complex velocity potential) for the external flow is shown by Pal to be 

equivalent to a variational problem.    A numerical procedure based on the varia- 

tional principle and the Ritz-Galerkin method is used to solve for the case of 

normal injection with a digital computer.    The pressure distribution along the 

plate upstream and streamline diagrams are given. (    ) 
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under Contract No.     DA 44-177-AMC-91(T). 
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1.    INTRODUCTION 

This investigation is concerned with the injection of a jet of total head Hi from 

an infinite plate into a uniform stream of lower total head Hg  (see Fig. la).   Two- 

dimensional,   steady, irrotational solutions of Euler's equations will be sought,   the fluids 

being assumed inviscid and incompressible.    The injection angle -a is fixed across the 

jet opening,  and at large distances from the origin all motion is assumed to be directed 

in the positive x-direction.    The region to leeward of the jet will be treated a    a stag- 

nant wake with constant pressure equal to that of the undisturbed stream. 

Flows of this type occur frequently in connection with VTOL aircraft,  ground 

effect machines and jet-flapped wings.    The basic difficulty in their analytical study 

is the non-linear boundary condition which must be applied along a streamline sepa- 

rating regions of different total heads.    To ensure the continuity of the static pressure 

a vortex sheet coincident with this streamline must be introduced.    The extensive 

literature dealing with this subject assumes one or more of the following:   1)  Hi  = Ha, 

2)   the jet is bounded by free streamlines and walls and there is essentially no inter- 

action with the external flow,   and 3)   the jet injection angle is small and linearized 

flow is assumed. 

Previous work using this model for 90    injection has been carried out by 

1 2 3 
Taylor   ,   Ting,   Libby and Ruger   ,   and Vizel and Mostinskii  .    Taylor uses a rough 

theoretical analysis to determine the shape of the bounding streamline OC near the jet 

exit and points out the difficulty of verifying any results experimentally because the jet 

will fill a wedge of nearly 40° due to viscous spreading.     Ting et al.   considers the 

problem when Hj is slightly larger than H2 and uses ordinary perturbation techniques 
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to correct the solution obtained for equal total heads.    They noted the difficulty of a 

straightforward perturbation procedure due to a non-uniformity in the flow deflection 

angle along the streamline OC [near the jet exit] when (Hi - Ha) -♦ 0 .    Vizel and 

Mostinskii treat the problem semi-empirically by introducing a coefficient of bending 

which is equivalent to specifying an average radius of curvature over the length of the 

jet.    They compare their results with experimental data obtained in one of their refer- 

t ences. 

The fundamental assumption of this analysis will be that the ratio of jet thickness 

d to its radius of curvature R will be small.    Physically this is to be expected when 

H1/H3 -• oo.    Using the simplified flow of Fig.   i,  it is then possible to take the basic 

non-linearity of the problem into account. 

This report is presented in three parts.    In Part I (by R. C.  Ackerberg and 

A.  Pal) a non-linear boundary condition is derived for the external flow based on the 

assumption that d/R < < 1   inside the jet (^2).    Since the jet shape is unknown,  the 

analysis is similar to potential flows with free streamlines and is readily carried out 

in the plane of the complex velocity potential.    In §3,  a non-linear potential problem is 

derived in this plane for the logarithm of the speed along any streamline in the external 

flow.    Formal asymptotic solutions of the potential problem have been found in 34 which 

are valid close to and far from the jet exit. 

In Part II (by A.   Pal),  the equivalence of the boundary value problem with a 

We have not been able to locate a copy of this reference. 

* 4 Motivated by this study Ackerberg    has started with the assumption H1/Ha -• oo 
instead of d/R < <  1.    The two assumptions are shown to be equivalent to first 
order for all streamlines not too close to the jet exit.    See the footnote on p. 5. 
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variational principle is discussed in   ;b.    In '.'6,  a numerical method of minimizing 

the variational integral based on the Ritz-Galerkin method is given.    The resulting 

system of non-linear equations is solved numerically for 90° injection in ^ 7 using 

Newton's method. 

In Part III (by R. C.  Ackerberg and A,   Pal),   the numerical results are compared 

with experimental and theoretical results of other workers. 

Most results obtained in this analysis would be altered significantly by viscous 

effects arising from the shear layers along OC and AB.    In addition,   this flow is 

notoriously unstable and the assumption of steady flow could probably not be maintained 

in an experiment.    Nevertheless,   it is expected that inviscid results will be valid close 

to the jet exit where a determination of the forces on the plate can be made. 

2.    THE THIN JET APPROXIMATION 

Introduce the complex space coordinate z = x + iy with origin at point O 

(see Fig.   la).    Since the locations of the streamlines OC and AB are not known in 

advance,   it is convenient to formulate this problem using a coordinate system based on 

the streamlines and equipotential lines.    Define the complex velocity potential w = cp + iti 

with i|( = 0,   and f = m > 0 along OC and AB respectively,  and t <  0 in the external flow. 

The vortex sheet along OC requires that two velocity potentials be used,   and conditions 

in the jet and the external flow will be denoted by the subscripts I and 2,   respectively. 

The flow region in the z-plane maps into the w-plane as shown in Fig.   2. 

Choose a curvilinear coordinate system (s, n) in the jet as follows (see Fig.   lb): 

Since f is continuous across the streamline OC,   it need not be subscripted. 
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The n-coordinate of a point P in the jet will be the distance PQ measured along the 

cp = const, line through P, and the s-coordinate will be the arc-length OQ along the 

bounding streamline OC.      The condition of irrotationality requires 

■      —    —"-       > 

in K l 
(2.1) 

where R1 is the radius of curvature of the streamline through (s,n). When d/R1 < < 1 , 

we may with good approximation assume 

P^is^n) ^ R(s)- n   > (2.2) 

where R(s) is the radius of curvature of the streamline OC. Physically this means that 

the streamlines in the jet crossing an equipotential line are approximated by concentric 

circles.    Substituting (2.2) into (2. 1) and integrating yields 

fn ^(■-v-O^- U^KU)-,,] i-a^;, (2•3, 

where a(s) is an arbitrary function.    Along the free streamline AB we require 

Substituting (2. 4) in (2. 3) we obtain 

(2.4) 

(2.5) 

Therefore, 

*,('-,^Ai^,= -/v(-,rr'n" - <2■6, 
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thus,  at any fixed value of s the velocity distribution is that of a potential vortex. 

TTie conservation of mass in the jet requires that a fixed volumetric flow rate 

cross every section s = constant,   i. e., 

J      (Jt(^r»)0U*   ^ooi^-O, (2.7) 

c 

where d     = d(cD) is the uniform jet thickness far downstream.    Substituting (2. 6) in 

(2. 7) and integrating yields 

i. e. 

dts)-c^[lt  C^).]^^ a • (2. 9) 

Thus,  the thickness of the jet is constant to first order. 

Across the streamline OC the pressure must be continuous.    Using Bernoulli's 

principle this requires 

Uit-^A^ -UH.-HJ   , 
where the  "  denotes the velocities at some point along the bounding stramline 

OC [e. g. ,  q1 = qi(s,o)].    Here H!  ? are the total heads in the jet and the external flow, 

respectively.    When (2. 10) is applied at an infinite distance downstream,   a relationship 

t 4 When a t n/2, Ackerberg    has shown that this approximation is  in error by 0(d/R) 
near the jet exit [|z| = O(d)] as a result of neglecting a boundary condition along OA. 
The thin jet approximation is valid in the region | z| = 0(d/u), where 
I-1 = Pa'ltL ' PiQ^Li "* 0«    Nevertheless,  the motion in the external flow (i. e. ,   the 

OO2 00l 
solution  of Eqs. (3. 13)-(3. 17)) will be determined correctly to o(l) up to the jet exit 
because the inaccuracy of (2. 6) modifies the boundary condition along OC only to a 
small order. 



between the basic parameters is obtained.    Introducing the small dimensionless 

parameter Q * (PaQ3    /Piqp    ) we obtain 

H i - Ha       , 
TT—r =1- ^ • (2.i2) 

Substituting (2. 6) with n = 0 into (2. 10) and neglecting terms of 0[(d/R)s]   yields 

(2.12) 

This is a boundary condition along OC for the external flow which relates the speed and 

curvature along this streamline. 

3.    THE FLOW IN THE EXTERNAL STREAM + 

In the external flow introduce the complex velocity potential 

« 
(3.1) 

where ♦ < 0,   -oo < CO < oo.    The complex velocity is 

J^U-.V-^e , (3.2, 

The bovmdary value problem for the external flow is most readily formulated in the 

w - plane.     Introduce the logarithm of the complex velocity 

Here Q and 9  are conjugate harmonic functions related by the Cauchy-Riemann 

Hereafter the subscript 2 which identifies quantities in the external flow will be 
omitted whenever possible. 
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equations 

^Q ;.^ 

t if ?v   ' 

7(X oh 
s 

o0( 
^ 

(3.4a) 

(3.4b) 

and defined in the region   j' < 0,   -oo < cp < oo. 

The curvature of any streamline is given by 

—±—    -.  =   o'-Z   ^ü,    e       ^     ., (3.5) 

where we have used (3. 4b) and the relation q = q       e    .    Applying (3. 5) to the bounding 
OOP 

r - Q(cPiO), 
streamline OC and substituting in (2. 13) yields [note q»  = q      e J 0 2 002 

t 

Solving for öQ/di|(   we obtain 

Along the wall DO the deflection is fixed.     Thus, 

©(^oj-ü   o&my  v^ji*-0' (3.8) 

This may be written in terms of    Q using (3. 4b),   i. e. , 

jp ^0      CLL^ü   v-C,  y<C , (3.9) 

At infinity the flow must be uniform and undeflected.     Therefore, 



\r 

0(f,^)-»O>       QCtriJ^C;     Ob      Iwl-t-OO   . (3.10) 

Eqs.   (3. 7)-(3. 10) are satisfied by the function r(w) H 0,    corresponding to a uniform 

stream and for which the flow does not turn through an angle -a near point O.    To 

satisfy this condition f must have a logarithmic singularity at i. = 0 (i. e. , w = 0) 

corresponding to a stagnation point flow in a corner.    Thus 

r(w)* £ U(enL\v)i P\*J) ; (3.11) 

where 0 > arg w > -n,  and Y   (w) is bounded at w = 0. 

On introducing the non-dimensional,  scaled complex velocity potential 

^ "cPrlü,*   ^  im       ^ (3. U) 
Si 5^, 

in Eqs.   (3. 7)-(3. 11),   the following non-linear potential problem is obtained for Q2: 

^.C       for    i\~Oj   ^<0J (3<13) 

c^ i   ^   r       A ^ 
a^ ~      V s   7 > 0 (3.15) 

with 

Q^^-f   ^|^/ (3.16) 

bounded at (J = ijf = 0,  and 

Q{ifi^)-^0       for    IWl-^oo   . (3.17) 
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4.    ASYMPTOTIC EXPANSIONS OF r(w) 

Formal asymptotic expansions of r(w)  which are analytic and which satisfy 

the boundary conditions term by term without inconsistency,   were constructed for 

w -• 0,  and w - oo.    Denoting e     w = W,  we obtain for W -• 0, 

ri-W)~f£nW+f f   clm^w)WnrmM
)     (4.-) 

n-ö ms'h 

where d       isingaiera.i  a polynomial in XnW with real coefficients.    Coefficients have mn or/ 

been obtained recursively up to n = 2 with no inconsistencies provided a single 

logarithmic term W2 ^nW is introduced.     The coefficientfc which multiply integral 

powers of W are indeterminate by this formal procedure. 

If a = n/2,   the following simpler expression is obtained1 

r(-W)~  ityxW+ Z   an W     * > (4-2) 

-a0 

where ag and a    are undetermined and a.x   -  -e       .    From the numerical computations 

in Part II for a = TT/2,  a0 = 0. 0450. . .,     a1   = -0. 955. . .,   and a    = - 1. 58. . .        Note 

that the relationship ax   = -e is satisfied with good approximation. 

In the case W - co,  the form of the formal asymptotic expansion does not 

depend on a.    We find 
OO 

h;0 



where P (L) denotes a polynomial (which seems to be of order n) with real coef- 

ficients.    From the first few terms it appears that the P 's can be obtained recur- 

sively with the exception of their constant terms.    Thus, 

r(-w) - ACVV ",' + (-^ A,XKu^Ajw'^V..   (4.4) 

* 
Numerical computations for a = n/2 yield A    = -0. 797. . . 

The equations of the streamlines may be found by integrating (3. 3),   i.e. , 

W 

0 

Putting w   = $   > 0   in (4. 2) and (4.4) and substituting these results in (4. 5),  we obtain 

the asymptotic behavior of the streamline OC close to and far from the jet exit.    These 

results are readily expressed in terms of the nondimensional,   scaled complex space 

coordinate 

Z-    X^   V-      *t, (4.6) 

where z  denotes the complex coordinate of a point on OC.    For | z | -• 0   in the special 

case  a = n/2 t 

Although these expansions are derived in a purely formal manner,   theoretical 
results of Pal    suggest that they are indeed asymptotic to Hw).    It is proved 
there that Q is asymptotic to the leading terms of the expansions,   and formulas 
are obtained expressing d0o and AQ with integrals involving the boundary values 
of Q.    Note that  Q(cp, 0) = 0(cp"3/:5) for cp - + oo  whereas r(w) = Odw]-1/2) for 
|w I "■• co in agreement with the formal asymptotic expression (4. 4). 

10 



X j, v/2 oo*;. (4.7) 

and for | z | " oo, 

^/ ^'-iK^-f.^U). (4.8) 

Using only the first term of (4. 7), and the first term of (4. 8) with an experimentally 

determined constant added, these asymptotic formulae are plotted along with the 

numerical result for a = TT/2 in Fig,   3.    The asymptotic curves fare in well with the 

numerical result. 

11 
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PART II 

by 

Alexander Pal' 

i The author is indebted to Dr.  R.C. Ackerberg for his cooperation in the 
research project out of which this section grew.    Frequent discussions with 
him of details of this work and his careful review of this section are con- 
sidered especially helpful.    He also helped by programming some of the 
subroutines used in the numerical work. 



5.    VARIATIONAL PRINCIPLE 

In Part I of this paper it was shown that the fluid flow problem of the interaction 

of a fast jet with a potential flow,  which is a parallel flow    at large distance from the 

orifice can be reduced to the solution of a plane boundary value problem which we formu- 

late there,   in a slightly different way,   using reflection on the   cp-axis. 

Let   G   denote the whole   (cp, 't')   plane,   slit along the    -cp-axis.     Then a function 

Q(cp, i|()   has to be found which satisfies the following conditions: 

Conditions in   G 

(a) Q(cp, \|()   is harmonic in   G   and symmetric to the real axis. 

* 1 
(b) The function   Q (cp.iM = Q(cp,iM-(a/nUn r (r= (r3+i)f:?r )    is 

bounded and   7Q (cp,t ) = o(r) uniformly as r -♦ 0. 

(c) Q(cp, i|() - 0, 7Q(cp, i|l) = o(l /r)unifornily,  as r - oo. 

Boundary Conditions 

(d) Q   and   r—   are continuous on the   +cp-axis.    Here   n   is the outer 
on 

normal to the domain   G   on   ^ = 0,   i. e. ,    -r— =   T—   on the lower side and   =- -r-r   on the 
on        o V of 

upper side of the cut. 

(e) ^ = - sinhQ   on   * = 0 ,  cp > 0. (5. 1) 
on 

(f) Q(cp, 0) = 0(cp"3'2)    as   cp-+a>, 

5 
Conditions (b),  (c),   and (f) are more stringent than necessary.     It was shown 

that the problem has a unique solution under much milder conditions (see also footnote 

on page  16).    However,   since this solution satisfies the stricter conditions above (including 

(b),(c),   and (f) ),   we may use this formulation for convenience.     It should also be noted 

that the formal asymptotic expansions obtained in Part I are consistent with these condi- 

tions. 

12 



Functions which satisfy conditions (b),(c),(d),   and (f),  (but are not necessarily 

harmonic or satisfy the boundary conditions) will be called "admissible",   and the family 

of admissible functions with a fixed value of   a   will be denoted by   Ö   . 7      a 

An important property of the family   Ö    is:    If the functions   u, v   belong to   (J    , 

then for all   MO <  \ < 1), 

also belongs to Ö   .    This may be expressed concisely as follows:   The function space 

Ö      is convex.     The statement is obvious;   to see it one only needs to verify that   w   satis- 

fies all criteria of admissibility if   u and v   do. 

The main difficulty in solving the above boundary value problem stems,  of course, 

from the non-linearity of the boundary condition (5. 1).    The fact that   Q   is harmonic sug- 
6*« 

gests a variational method based on the Dirichlet principle. 

Generalized Dirichlet Integral.    We first extend the notion of the Dirichlet integral 

slightly to admit functions which have a logarithmic singularity at the origin,   such that 

The name convex is suggested by the analogy to finite dimensional "Daces; e. g. , a '.jail 
is convex because, if the points p, q belong to the ball, then the entire straight segment 
connecting   p and q   belongs to the same ball. 

The Dirichlet principle states that in a domain   G    with a sufficiently smooth boundary, 
there is a function   Q   which makes the Dirichlet integral 

0[uj-- i {{{va)xä<fdf 

minimum under the constraint that   Q   assumes given continuous boundary values,   Q   is 
harmonic in   G. 

13 
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they satisfy condition (b). 

We will use the following notations: 

1.    G      will denote the subdomain   c < r<\   of   G; c 

Z.    D   [u],   D   [u, v]   will denote the Dirichlet integral of   u   over the 

A domain  G   ,  and the associated bilinear form,  i.e. 

3.    0    subscripts and   oo   superscripts will be omitted in these forms,   as 

from   A     defined below. 
e 

4.    C.    will denote the circle    r = X . 

The Dirichlet integral is for admissible functions in general divergent.    In order 

to separate its "finite part",  we define 

0 (5.2) 

and 

4^L«JH 4;L^,"J 

It is easy to see that if   U(T, )),  v(:p, f )    satisfy conditions (b) and (c),   then   A   Lu, v]   has a 

limit   Alu, vj   when    €^0and\-oo,   (and similarly   ."   [U]-A[U] =A[U, U]). 

If all integrations in the preceeding definitions are extended only to the upper 

(lower) halfplane,   we can define the functionals   A      . LU],   A + [u],etc. (A       Lu], A   Cu] 

etc. ) completely analogously.    Thus 
c. 

^ [^J = ^,U'J ^ /-3-L ^] etc. 

14 



We mention some important properties of the functional   ALUJ : 

(1) Let the functions   u(cp, iji),  v(cp, f )   be admissible,   say,   ueö fv tÜQ. 
0. o 

Then   u + v e ö   i o and a + p 

Alf. f-v]   -  ^fu.j   t   J.l\[^,yj]   i ä[V.\ (5.3) 

Eq.   (5. 3) is an immediate consequence of the identity 

Z,c I
1-- <" V J  - ^c [u]   r x' /Av I u ^ J r ^c W J  , 

if we observe that   A   Lu] , A   LvJ, A   Lu + v]   all have limits as    e-0. 
€ e € 

(2) Suppose   h(cp, 'I')   is a harmonic function in Q,   ,   and   k(cp, t )   is a function 

in Ö ,   (thus   k   has a finite Dirichlet integral in G).     Then, 

J-^lk/K]^    p\      k,  (^f.cK (^.Oc(f   , * (5.4) 
A." 

The proof of Eq.   (5. 4) can be found in Appendix 1. 

Substituting (5.4) into (5. 3),   we obtain 

A[h>K].£lh]= I   pj   L^Ok^/OXifi D[k]  .(5.5) 
- oo 

(3)   The functional   Alu]   can be defined alternatively by ordinary Dirichlet 

integrals.    Let   \   be any positive number.    Then 

AL"]-"   Vil*]*  D^l^lrj^l  U0li-£ U\ (5.6) 

where   u  = u - (a/T
7
 )-f n r.    The proof of this identity can be found in Appendix 2. 

Formulation of Variational Problem.    If   u   is admissible,  then the boundary 

integral 

— 
P denotes here the "Cauchy principal value" of the integral: 
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is always convergent.    From   AC u]  and  B[u]   we form the composite expression 

^[«J -"  ^t aj   ^6["J   • (5-8) 

We mention here a property of   F[u]   which will be useful later:   F[u]   is a 

"convex" functional;   i. e.,  if   ueÖ,  ve/2  ,   and for some   \ ,   0 < X< 1,  w = \u+(l-X)v,   a a 
u^v,  then 

F f vvj <   A F [  U ] f- ( / - > ) F [ VJ * (5.9) 

The proof of this property can be found in Appendix 3. 

We consider now the following variational problem (problem "VAR"):   Find an 

'admissible' function  Q(cp, I|I)€Ö  ,   suchthat   FLQ^FLQ.]  for any   Q.cö    different from 

Q.    Although the existence of a function   Q   will not be established in this paper,       we will 

show that the problem   VAR   is equivalent to the problem BV; thus if problem  BV has a 

solution,  it is also a solution of problem VAR,   and conversely.    Such a solution is by its 

minimum property necessarily unique. 

—J  
Equation (5. 9) is obviously satisfied by an (ordinary) function   F(u)   which is convex 
from below.     Moreover,  convex functions can be defined by (5. 9). 

** 5 
The existence of a solution of the problem VAR is shown (see Pal   ) in a stronger 
form.    It is proven there that there is a unique function   Q   admissible in the above 
sense,   which renders   FLQ]   the smallest in a much wider function class u   •  (Ö 

requires for membership    D   [u   ]<oo,   D.[u]<oo   and B[u] < 00,   instead 
properties   (b),(c),(d),   and (f). 

A different proof of the equivalence of   BV and VAR,   using (1.6) as the defining equa- 
tion 

fferent proof of the equivalence of   E 
of   A[UJ    was given by Ackerberg. ^ 

& & & 
I am thankful for this observation on the uniqueness to R. C.   Ackerberg. 
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We call attention in this variational problem to the absense of any kind of boundary 

conditions along the real axis.     The fulfillment of the boundary condition will be shown to 

be a consequence of the minimum property of the solution.    Similar situations are not 

infrequent in variational problems.    ("Free boundary values",   "natural boundary condi- 

tions")6. 

Proof of the equivalence of the problems BV and VAR 

I.     We first show that if the function   Q(cp, i|()   satisfies the conditions of VAR,   then 

it is also a solution of BV. 

(a) The function   Q   must be harmonic in   G.    If it is not,  then there is a 

circular disk   OJ   entirely in   G,   in which  Q   is not harmonic.    Then it it possible by 

Poisson's integral to construct a function   Q.    such that   Q=Q.    on the boundary and out- 

side   X',   and   Q.   harmonic in   x.    Then by Dirichlet's principle, 

(D     denotes here the Dirichlet - integral in   x).    If   c   is chosen so small that   C     is 

completely outside   x, 

since   0=0.    outside   x.    Hence 

a contradiction to the assumption that   Q   satisfies the conditions of problem   VAR. 

(b) The function   O   must be symmetric to the   cp-axis.   Suppose e. g.  that 

Then we define the new admissible function 

17 



Clearly ACüJ < ^[.cu 
which by assumption is only possible if   Q  =Q. 

(c)    We will use the definition of the first variation of functionals customary 

in variational calculus.    If   6 Q(cp, \|( )   is an arbitrary    variation of   Q,   and   f[Q]   is a 

functional,   then 

is the "first variation" of   $[Q].     Thus we show that 

(5.11) 
where   r|(cp) = 1,   if   rp > 0 and rtfcp) = 0   if   cp < 0. 

Equation (5. 11) immediately implies that if   Q   is a solution of the problem VAR, 

i. e. ,  Q   satisfies all conditions of BV. 

Equation (5. 11) is an easy consequence of (5. 5).    Substituting   h = Q,   k = \6Q   in 

(5. 5) and taking into account the symmetry of   Q, 6Q, 

This implies by definition (1. 10) that 

S^[Q].    (      (LfLf)0)oX(ijC)c(lf   . (5.12) 
0 

On the other hand,  from the definition of   BLQ] (Eq. (5. 7) ), 

However,   in the present context,   only such variations    6Q   are admissible for which 
Q +\6QcÖ     for all sufficiently small values of   \\\.    For this it is sufficient if 

6Q cö .     Furthermore if is sufficient to consider only variations symmetric to the cp-axis. 

18 
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is obvious.    Combining with (5. 12),   we obtain (5. 11). 

II.    Suppose now that   Q(cp, I|I )   is a solution of problem   BV.    Then by (5. 11), 

6F[Q]= 0,   i.e.,   FLO]    is stationary.     To show that   F[Q]   has an absolute minimum in 

Q,   we will use the "convexity" of the function space Ö     and of the functional   F. 

Let   Q. ^ Q   be any other admissible function.    Consider the functions 

By the convexity of u , S also belongs to Ö . Denote F[S] = i(\). 6 FLO] = 0 implies 

$'(())= 0. However, by the convexity of F[u], the function Hk) is convex from below 

in (0, 1);   thus, 

i. e. ,   F[u]   has an absolute minimum when   u = Q. 
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6.    CONFORMAL MAPPING INTO A CIRCLE 

In the numerical solution of the variational problem VAR it is desirable that the 

domains of integration be finite.     Therefore,   the half-plane   Y < 0   is conformally mapped 

s :  I s | < 1,  Im s > 0 [ of the complex s-plane.    The mapping 

S -  S(^ 7-      V      ,     / (6.1a) 

* * W{>)s - ["yr-y )   ' (6.ib) 

into the half-circle disk   G 

function is 

and its inverse 

Here  (-w)      is defined by providing the w-plane with a slot along the positive imaginary 

axis;   thus,   0 < arg(-w)    < ■? . 

If Then 

w S(w) 

= 0 = -1 

on the -cp - axis on the (-1,   +1) diameter 

= oo = +1 

on the +cp-axis on the s=e     ,0<T<TT half 

+ 1 i 

(see Fig. 4) 

iT Let  s=pe    .    The mapping of the positive cp-axis into the half-circle   c=l,   0<T<TT   is 

described by 

cf  *[cot^ */>- )]      • (6.2) 
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Evaluation of   F[u]   in the s-plane.     To take the logarithmic singularity of the 

function   r(w) =Q- i n   at the origin of the w-plane into account,   we introduce the functions 

RiS) =   ^ i'v^   ^ ; (6.3) 

^ ,   J^ccu   <   I 

(6.4) 

-K^r )-- Re R'w) -  ^   tv.    '      4. - (6.3') 

Write   f(8)= r(W(s)) and 

a KO- d(^r^ ^^r) - (6.4') 
In general,   for any admissible   u(piT ),   the function u   (p, T) = u - r(p, T) is bounded in 

p <  1.    Further conditions on u    are specified below. — o r 

The functional   ^ [u]   can be transformed into the s-plane using (5. 5).    Replacing 

there   h   by   r(p, T ),   k by u   and observing that   r (1, T) *  a/n,   we obtain 

4[uJ  -D[uoJ t   |   [  UcU,T)dT  f ^[-T]   . (6.5) 

Since the Dirichlet integral is invariant with respect to conformal mapping, the term 

D[U   ]   may be evaluated in the s-plane.      A[r],   a constant,   is irrelevant with respect to 

the variational problem.       Therefore we will use the form 

F f^j^r^j ♦- BL^J, 
(6.6) 

where ;i/i       .     .     ._     .i  ^ M 

-    |      {   ^p[iU.(l^tjJc«t-^[-i«c(0^)Jf    ^   -(6.7) 
0 

21 



IF' 

When    u     is harmonic,   (6. 5 ') can be expressed in the form of boundary integrals by 

transforming   DCu^]   with Green's formula: 

rrfx 

4|»|   u0(hit)[ "c<>U>it) + l]ät  . (6.8) 

Boundary conditions at   s =+1 and s=-l.    Q(cpf t)   is expected to possess properties 

(b),(c) and (f) of "admissible" functions.    In the s-plane this can be expressed as follows, 

(b')   QO(1,TT) = 0,    and 7Qo = ods + ll'1) 

as    s - -I.     (Here as above.   Q  (p, T) = Q(P, T) - r(p, T). ) o 

(c')   Q  (1,0) = 0, and VQ    s o(| s - 1 f1)   as s - +1. 
o o 

(f')   Q(1.T) = O(T3) (6.9) 

as   T "* 0.    This implies 

as   T "* 0. 

QO0^) = ^T2 + O(T3) (6. 10) 
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7.    APPLICATION OF THE RITZ-GALERKIN METHOD 

The variational problem VAR was solved in the special case   a=n/2   (normal 

injection) numerically,   with the Ritz-Galerkin method.     This method is often used with 

advantage when the value of the variational integral is the most important result,   e. g. , 

in problems involving eigenvalues (elastic buckling,   resonant frequencies in vibration 

problems).    It is known from experience that usually the value of the variational integral 

can be determined much more precisely than the minimizing function.    In the present 

case only the minimizing function is of physical significance.    Nevertheless,   the Ritz- 

Galerkin method (referred to by R - G) was found quite suitable and probably better than 

a relaxation type method.    Our choice fell on the former for the following reasons: 

(1)   In the   R - G   method the unknown function is approximated vith a 

linear combination of known functions (we will say that these functions form a "base"). 

The base can be chosen in such a manner that they contain much of the information known 

about the solution before the computation is started.    In the present problem it is known 

that the solution is harmonic,   symmetric to the real axis,   and smooth on the boundary. 

The base can be chosen to satisfy these conditions identically.     Boundary conditions at 

s = -1 and s = +1    can be taken into account by proper combination of the elements of the 

base.     Thus a significant portion of the computing work can be saved if known properties 

of the solution are taken into account by a judicious choice of the base. 

In the present problem the R - G method requires the determination of a one- 

dimensional array of coefficients,   (p      in Eq.   (7. 2)) as opposed to the two-dimensional 

array of grid points in the relaxation methods.    (Actual computation,  discussed below, 

showed that only 15 coefficients yielded as satisfactory results as probably thousands of 

values in grid points would have done. ) 
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(2)   The circular shape of the domain makes the use of rectangular grids 

clumsy.    On the other hand,  if the w-plane is chosen,   the infiniteness of the domain is a 

source of trouble. 

According to the R-G   method,   we use a formal expansion 

rjO* pts)- u -4--' - f )onHjs;, (7.i) 
>1   I.' 

QoU) ^ £[?>*)- i U SllJJ^' I 

-~ 1  f>A ^M'x) >       (7.2) 

where   H (s)   are analytic functions to be specified,  h (p, T ) = Re H (s),   and the   p     are 
n n n n 

unknown coefficients.     To take full advantage of the economy of the R-G   method,  the 

functions   h (p, T)    will be chosen such that they satisfy the following conditions: 

1) h (p, T )   is harmonic in   p < 1,  continuous on   p = 1. 

2) h (p, T)   is symmetric to the real s-axis. 

3) h (1, T )   must form a complete system in   (0, n),   i. e. ,  every square 

integrable function   U(T)   can be expanded in a series 

-u(r)- T. ?n ^M('.r)   . : 

h (1,T)   need not be differentiable in   T=0, rr,   since Q   (1, T)   is not differentiable there, 
n o 

The functions   h  (p, T)   will be determined such that on the half-circle    p = 1, 
n 

0  <  T  <    TT 

This expansion need be valid only with the exception of a set of measure zero. 
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/|   ,      (    /;   t     .)        (Ob   HT { n-   l-v  ',Z,    .. .)   , (7.3') 

Q  (1, T)   can then be expanded in an infinity of ways into the series 

(7.3") 

Cv'o ihr): }   ^ {p*ctun t/V; divi^r) (7#4) 

which is valid in   0 ^ r ^f n- 

Conditions 1) and 2),   combined with (7. 3') and (7. 3"),   are sufficient to determine 

h  (^ , T )    uniquely, 
n 

h-Zn^ >'* ) *   ^Mnl i'^t' ,*,*>) (7.6) 

is obtained quite straightforwardly.     The functions   h-,       ,    are somewhat more cumber- 
Zn - 1 

some to compute.    Taking into account property 2), 

{in\ MT       I\     C -<■  C <~ A        ^ 

By Fourier series expansion of h (1, T),   and matching with harmonic functions 

term-by-term, 

4-,,  <~ ,    -^A_ (?~CM /^r 

l 

(7.7) 

(n = 1, 2, . . . ),    where    c   --rr,   €.= c=... = 1;  \   =0   for even values of   v and  \   = 1    for odd 
o   Z       1      ^ v v 

values of   v. 

Actually,   a function    $(T)   with continuous   $   (T ) in (0, n),   can be expanded into series of 
the forms 

and 
$ LT)   ' ZT     b*  u'itxT ■ (7.5") 

The redundancy (and consequent greater flexibility) in the expansion (7.4) allows a closer 
approximation of   Q::c( 1, T )   then would be possible with series of either the type (7.5') or 
of (7. 5").     The latter series converge in the neighborhood of the endpoints   0, n   rather 
slowly in general,  because either all the base functions or all their first derivatives van- 
ish at the end points.     Therotore the approximation of a function with non-zero values 
and first derivatives of 0 and pis not practical with the  series (7. 5   )or (7. 5   ). 
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The corresponding complex forms are 

^„(5)   -   Sn (   h*0,l>2,<.,  )       (7.8) 

The expansions (7. 7),  (7. 9) converge too slowly if   p  is close to unity.    Therefore,   it 

was necessary to use the following alternative expression: 

^-/^^IIK^-^-^TTT-Z'^^-'-S-'"-')] (7.10, 

Equation (7. 10) was obtained from (7. 9) by a tedious rearrangement of the series.    The 

equivalence of (7. 9) and (7. 10) is simpler to show by substituting the power-series expan- 

1 + s sion of   tn-,    into (7. 10).    The two series are complementary i. e. ,   (7. 10) is suitable 
1 - s 

for computation when    |s|    is not too small,   and (7. 9) should be used for small    |s|, 

Variational integrals.    Approximating   Q      with a finite number of terms of the 

series (7. Z),  both   A [Q] and  B[Q]   become functions of the coefficients   p  .   We write 
n 

and 

The functions   6,8   can be obtained from (6. 3") and (6. 5) respectively,  by the 

substitution of ^ ~ ' 

Q„(^r) = ir P~A„(?/r; , (7.12, 
0 n:0 

Thus,   6(p)   is a mixed quadratic form, 

SCr)=iZ r ««„r^p^Z KPn ' (7.i3) 
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_. A : T^ -    -7 *-i 

The coefficients   a       ,   b      are defined by the formulas 
mn      n 

a ]       kj /,T ) KhLl  )ciT   , (7.14) 

hn    -{- \    /ihi l/z ) äT > (7.15) 

and   K  (T) =   T-A h   (p, T)   . .    From Eqs.   (7. 8) and (7. 10) 
D = 1 

K       (T  )  -  n CM  hT , (7.16') 
In 

UM*' Til 2. Stuf 
r  4.   ^v^'f' 
z 

* * I   K^ 7rk^
KT} - (7. 16") 

K     I 

The matrix elements    a       ,  b      can be expressed from (7. 14) and (7. 15) in closed form. mn      n r 

Since this involves a considerable amount of transformation of series,   and is quite labo- 

rious,   the details are omitted.     The closed formulas obtained for the matrix elements are 

very useful in the numerical work,   and are listed in Appendix 4.    These formulas are 

consistent with the symmetry of the matrix   a      ,   and were checked by numerical integra- ' 7 mn 7 6 

tion. 

No similar reduction of   3(p)    is possible because of the non-linearity of the boundary 

conditions.     Thus,   from (6. 5) 

ß[f>)~] ECttp)''[c<*t.Lii/p)- 1]* M'   t   dt (7.17) 

E[i}p) = t<P (A pn^At^t v   • (7-18) 

The problem of finding the function   Q(.-, T)(   for which    F[Q]    assumes its minimum is 

thus reduced (in approximation) to that of finding the minimum of the function of   N   vari- 

ables  f(p) = 6(p) + ti(p). 
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The function   ^(p)   will be minimized by constructing a sequence of "admissible" 

coefficient families  Ip*    |(r =1,2,3,..,)   such that 

$(P^)  ->    ^f$(P) as f* ■—> oo  . 

In the numerical work for the determination of the function   Q,   the coefficients   p     were 

subjected to the constraints given below.    A combination of coefficients will be considered 

admissible only if the function 

satisfies the boundary conditions at   8=±1;    i.e.  the conditions (b'),(c ),  and(f') in ^2. 

Condition (f') (Eq.   (6. 10)) implies 

K 

IkYZ-i. (7.21) 

These equations already imply the milder conditions (c'),   considering the forms (7. 7), 

(7.9) of   H (s). n 

Condition (b'):   From the form (3. 9) of   H0       .(s)   it follows that en - l 

as   s -• -1 ;   hence, 

9 n 
_, 

Note that constraint (7. 20) guarantees that no term of the form   A(s - 1) ^n(8 - 1)   will 
appear in the expansion for   s-'+l. 

** 
I am indebted to R.C.  Ackerberg for the formulation (7.21). 
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Thus the condition (b  ) is already satisfied.    Nevertheless the asymptotic equation (4,2) 

of Part I implies that (d/ds) F  (s) is bounded in the neighborhood of the point s = -1. 

Hence in the numerical computation we may (and did) impose the additional constraint 

(Vkp^.O (7.22) 
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8.    NUMERICAL METHOD 

We will denote 

8„(P;=|J-= t. + J f«^t t-^/oj-tkpr'^^'^^^t '   (e.i) 
and 

r^. ^ P, 

= a M n + f T/i   , ölt 
}o      {Cri-t   ^U^) ^(t^r'j^m^^^0'2^!^     (8-2) 

These integrals converge if (7. 19),   (7. 22) are satisfied. 

With the constraints (7. 19) - (7. 22) added,  the variational problem implies by the 

use of the Lagrange multipliers    "> ., \^, X  , X.  : 

Bn(f)ftnnl ^lfmH2^tm^^f-rnn4X4  =0' (8-3) 

The coefficients   m       are listed in Table 1. nv 

n     i 
m   , 

n 
mn2 m   , n3 

m      A n4         jj 

= 2k 1 0 k2 0 

=2k-l 0 k 0 (-l)kk 

Table 1 

In vector notation (8. 3) can be written 

B(p) t  M  A - C (8.4) 

where   M   is a (known)   N x 4 matrix,  T   a 4-element column matrix. 

The solution of (8. 2) was obtained by Newton's method.    In principle,  this required 

choosing a starting vector   p     which satisfies the constraints (7. 19) through (7. 22),   and 
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to compute the sequences   p   ,\   ,  (r = 1, 2, 3, . . . ) defined recursively by the following 

relations: 

*(£<"•>. pV)r   M A1""^- - ß'p'M)  , (8.5) 

^(^'■'fn =o      , ,8.6, 

where   M      is the transpose of    M.    Equation (8. 6) ensures that the constraints (8. 3) 

continue to be satisfied.     Equations (8. 5) and (8. 6) represent a linear system of   N+4 

equations,   with the unknowns   p        -p   >(n = 0,...,N-l) and   \.       ,   (j = 1, 2, 3, 4).    It 

can be shown that the determinant of the system cannot vanish so that (8. 5) - (8. 6) always 

has a unique solution. 

The iteration for the computation of the coefficients   p      was programmed for the 

IBM 7040 computer using this method.     The computation was started with   N = 4,  the 

lowest number for which the constraints can be satisfied.    For   N = 4,   the coefficients   p 

are fully determined by the constraints.     Then a number of iterations were carried out 

for   N = 5,   with the starting value   P4=0;    when the  function   $(p   ,...,p  )    reached its 

minimum for   N = 5 with sufficient approximation,   the iteration was continued with   N = 6, 

with a starting value   p   =0,   and so on.     Thus,   a double iteration was used,   consisting of 

a sequence of iteration steps ("major steps"),   and each major step was itself an iteration 

for a fixed value of   N   . 
o 

Practical details of the computation. 

(1)   In each step of the iteration   N(N+ l)/2.   elements of the matrix A and 

N elements of   b   have to be evaluated by numerical integration.     In each integration the 

integrand has to be evaluated in   M   places,   where   M   is the number of subdivisions of 

the integration interval   (0,  j).    As a result,   the numerical integration accounts for most 

o! the computer time needed to perform the Newton iteration.     We used in the integrations 
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7 
Gauss mechanical quadrature,  96-point formula.       The integration subroutine yielded 

5 or more significant digits accuracy,  when the integrands were bounded,   reasonably 

smooth functions.    To test the integration routine,   a      , b     were evaluated with numerical 6 mn      n 

integration,  and the results were compared with the closed formulas derived.    (Appendix 3) 

(2)   The error of each step of Newton's iteration was measured by 

C =  max   / B^(>) \ / mtXK  )5k I 

where   S.    is the biggest partial sum (in absolute value) in the computation of   B. .    The 

iteration in a major step was considered finished when   €   did not exceed   2x 10'   .    It 

was somewhat surprising that with the exception of the first three major steps,   this limit 

was reached in a single iteration.    At the end of each major step,   we computed the new 

approximation to   Q      and the error   6(t)   committed in the boundary condition (5. 1),   in 

the 96 subdivision points of integration,  i. e. , 

isH'T^S'M 
The square norm of 6(t). 

0 

was used to judge the goodness of the answer in each major step. As an additional check 

the total angle of deflection of the jet was computed after each major step using the for- 

mula 

0 

JO 
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(The theoretical limit valur of   & after infinitely many iterations is of course 90   ). 

The values of   ${p),       6   I ,   9 obtained in the course of the iteration are listed in 1111       max 

Table 2.    As is evident from this table,    UMI    decreased steadily during the first 11 

-4 major steps,   and reached a minimum of 4. 38 x 10     ,   well within the tolerance of engi- 

neering computations.    After this the goodness of the approximation,   as judged from the 

values of     ilMl .   deteriorated first slowly,  then faster,   and in general changed in an 

erratic fashion.    The reason for this peculiar trend is probably that the integration routine 

loses accuracy for high harmonics    sinnT,   cosnT,   while the theoretical gain in accuracy 

of these terms is becoming smaller.    Also,  the SHARE routine used for the solution of 

systems of linear equations loses accuracy for a large number of equations.    Another 

measure of the progress of the computation is the der^ense of   $(p).    As seen from Table 

2,   t(p)   converges extremely rapidly to its minimum,   in fact much more rapidly than   6. 

(The best value of   $(p)   was 0.474498,   whereas the first   (!)   major step resulted in 

i(p) - 0. 480. . . )   The coefficients   A..(p)   also converge rapidly;   they hardly change from 

one step to the next,   once computed.    However,  the coefficients   p.   do not show any trend 

of convergence,   a fact explained by the infinitely many possibilities to represent a single 

function   Q  (1. r)   by a series      p   h   (1,T).    The "best" choice of the coefficients   p 

(n = 0, 1, . . . , 14)   is listed in Table 3. 

The iteration described above took 5^ minutes on the IBM 7040 computer. 

(3)   In the final phase of the computation the coefficients   p     were used to 

obtain the functions   X(cp, l|() and Y(cp, ty).     This was based on the formula 

Z -    f 0 " r^(" '>-   C] -^ -   f   C   f vv -2 (- w) "2]      (*■ 7) 

where 

C = e 
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Equation (8. 7) is a direct consequence of Part I,  Eq.  (4. 5).    This form of the equation 

has the advantage that the integrand remains bounded at the origin.    The integration was 

carried out by a subroutine to solve systems of ordinary differential equations,  based on 

the Adams-Bashford method (4     order),   written by Kenneth Plotkin. 

N V Hp) |6 8   /degr. 
max/  6 T /sec. 

5 5 0. 48025144 3. 807 x 10"1 66. 58 .68 

6 2 0. 47479781 1.671 x 10"1 93.664 .90 

7 2 0. 47450213 2. 347 x 10'2 87.932 1. 17 

8 0. 47449958 3. 823 x 10'3 88.223 1. 48 

9 0. 47449929 7.608 x 10"3 88.6648 1.83 

10 0. 47449854 1. 631 x 10"3 89. 5812 2.23 

11 . 0. 47449850 4.156 x 10"3 89.6775 2.68 

12 0. 47449845 1. 017 x 10"3 89. 7799 3. ie 

13 0. 47449843 4. 63 x 10"4 89.992 3. 73 

14 0. 47449842 4. 62 x 10"4 89.968 4. 32 

15 0. 47449841 4. 38 x 10"4 89. 974 4.97 

16 0. 47449841 1. 676 x lo'
3 

90. 027 5.65 

17 . 0. 47449841 1. 587 x 10'3 89.979 6.37 

18 0. 47449839 c.. 88 x 10"4 89.921 7. 17 

19 0. 47449838 1. 640 x 10"3 89. 889 8.00 

zo 0. 47449838 2. 257 x 10'3 89.899 8.88 

Table 2. 

N number of unknown coefficients   p rn 
v number of iterations/major step 

4i(p)        value of variational integral 

||6 |j     norm of error in boundary condition 

0 total angle of deflection of jet 
max " 

T. time required for individual iteration 
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•^n_ _ . -   . -r ^ ^r- 

n K Pn 

0 . 520853172 x lO'1 

1 -.433968985 x 10'2 -.106932819 x 10"2 

2 -. 261440941 x lO-1 -.158038496 x 10'1 

3 -.225389441 x 10'1 -.210494106 x 10"2 

4 -. 410373311 x 10"2 . 102374660 x 10"1 

5 . 461629598 x 10'2 .168663154 x 10"2 

6 .676816046 x lO-3 -. 155-;02682 x lO-2 

7 -. 251967831 x 10'3 -.149858572 x 10"3 

Table  3. 

(P 2n      Kn  '   K2n- 1 P^_ ,     PI) 
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9.    DISCUSSION OF RESULTS AND CONCLUSIONS 

Plots of the bounding streamline which were determined numerically using a 

variational technique are displayed in Figs.   3 and 5,  along with Taylor's theoretical 

results     and some experimental data from V.zel and Mostinskii  .    Some of the stream- 

lines and äquipotential lines are shown in Fig.   6 in the neighborhood of the jet opening. 

The numerical results indicate a deeper jet penetration than had been found by either 

Taylor or experiment.     Taylor mentions the difficulty of verifying theoretical results 

experimentally due to the viscous spreading of the jet which would fill a wedge of nearly 

40 degrees.    With this in mind,  the discrepancy between the theoretical curve and the 

experimental data in Fig.   5 is probably not so great. 

Finally,   using Bernoulli's principle in the external flow,   the coefficient of the 

pressure can be written 

CV^f-ff-M-e 

Numerical values for C    were computed versus distance along the plate upstream and 

are displayed in Fig.   7.    It is readily seen that the pressure decreases slowly from 

the stagnation pressure at the jet exit to the free stream value many slot widths 

upstream. 
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APPENDIX 1 

♦• >J 

Proof of Equation (5. 4): 

To show (5. 4) we transform   A ' Lh, k]   by Green's formula,   taking into account 

that  h(cp, %)   is harmonic.    Thus, 

and . . ^ 

y= cA .(.'   v  )-   -t-   f    h c/s    . 

(Al.l) 

where 

Let now   e-0.    Then,  using property (b),   a simple computation shows that   X-0, 

and since   k   is bounded. 

k ot c 

r 
Letting   X-oo,   from property (c; follows that    I  h     kds-0.    Substituting these limits into 

(Al. 1),   the statement (5. 4) follows. 
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APPENDIX 2 

Proof of the identity (5. 6): i. 

>, ffi ft 

A   Lu]   can be written by the substitution   u = u   + — ^n rf   using polar coordinates 

( r,  9),   in the form 1.11      tliV>     1 *-/ X   111 

J ^ f A - ^ 

Let now   C-'O.    Taking into account that   u     is bounded in the neighborhood of the origin, 

we obtain 

The proposition follows now from the identity 

A[u]-AX[uJ ^DAC^J  - 
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APPENDIX 3 

Proof of the convexity of the functional   F[u3. 

We first show that the (ordinary) Dirichiet-integral is a convex functional.    Let 

S   denote an arbitrary domain,  D  [u]    the Dirichiet-integral of the function   u   in   S   and s 

d[u] = (D  [u])*,  the "Dirichiet-norm" of   u.    If   d[u] < oo,   d[v]<oo,  then   u, v   satisfy 
g 

the following the triangle inequality 

Let   k   by any number,   0 < k < 1.    Then,   since   d[u]    is homogeneous first order 

ln ^        §(k)^ dlka i-H^)^<k d[u] tii-kldl*], (A3. 2) 

i. e. ,   d[u]   is convex (but not strictly,   since equality is possible in (A3   2)).    Moreover, 

since   u, v   are arbitrary,   $(k)   is a convex,   non-negative function.    Actually,   $(k)   can 

vanish at most for a single value of   k,   for which   ku+(l-k)v = 0   almost everywhere 

(possible only if   u and v are linearly dependent).     This implies that  [*(k)]      is strictly 

convex;   consequently,  if   u ^  v, 

(A3. 3) 

i. e. , 

Apply now (A3. 3) to   S=G,,   and the admissible functions   u, v,  u ^ v,   and also to 

S = G   ,   u  ,v   .     Then from (5.6) follows the convexity of   AluJ. 

The convexity of 

J 0 
is an immediate consequence of the convexity of the function   cosh u.    Therefore 

F[u] = A[U]  + B[u]   is also convex. 
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A P P E N D I X 4 

E v a l u a t i o n of the M a t r i c e s (a ), (b ). m n n 

CL , = 0 i f m f n j 2 m ,2 r> 

_ 7T a j - •£ M 

a 
m 2-

(X^ = 0 if k i s e v e n , = 1 , if k i s odd) 

<3 , 4 ~ ~ ^ ( t o - tc>„ ) / f ' « f n 
2m -11 - i f i j? m2--n 

CI - r\ 
2n- *j 2-n-i TJ- -* *-n,' 

/ 

H e r e 
t 0 . 2 * 
tdiA..=l• i f " ' j r " , T i iVr; 

->!•}*,,= 1 * y>- * * ,7777,* f T f T T (2k. - I)*~ Z(j.k + l ) 

The m a t r i x a i s s y m m e t r i c , i. e. , a = a F o r bo th e v e n and f o r odd s u b s c r i p t s m n n m r 

only n o n - n e g a t i v e v a l u e s m a y be s u b s t i t u t e d . 

The m a t r i x b : 

*>o= f ' b2k " 0 'f k ^ C ' 

^4* . ' ^Ak-r 5 ^ ' 
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